5.3 Notes and Examples

Name:

- 5.3: Derivatives of Inverse Functions
- 1. Warm Up Questions
 - (a) If g(2) = 3 and g'(2) = -4, and $f(x) = x^2 \ln(g(x))$, find f'(2)

(b) Find the derivative of $y = x^{2x+3}$

(c) If
$$y = \frac{x}{\ln x}$$
 then $y' = \frac{\ln x - 1}{(\ln x)^2}$, and $y'' = \frac{2 - \ln x}{x(\ln x)^3}$. Find and justify any relative extrema.

- 2. Inverse functions (as seen in previous courses):
 - (a) If f(a) = b and always b, never something else, then f is a function. If we have the graph of f we

can use the _____ line test to determine if f is a function.

- (b) If a function is "injective", that is _____, it passes the _____ line test, and we know its inverse is also a function.
- (c) x's and y's are _____
- (d) Domains and ranges are _____
- (e) graphs are symmetric over the line _____
- (f) f and g are inverses if and only if $f(g(x)) = ___= g(f(x))$
- (g) ______ functions (always increasing or always decreasing) will ______ have an inverse that is a function.
- (h) Notation: $f^{-1}(x)$ is the _____ of f. The inverse of g(x) is written _____

- 3. ALWAYS restrict the the domain of the inverse function to the range of the function. (a) Find $f^{-1}(x)$, the inverse of f(x) = 6x + 2
 - (b) Find $g^{-1}(x)$, the inverse of $g(x) = \sqrt{x-5}$. Find the domain and range of $g^{-1}(x)$

And now the Calculus of inverse functions...

4. Consider $f(x) = \frac{1}{2}x^2 + 2$ on $[0, \infty)$ and $f^{-1}(x) = \sqrt{2x - 4}$ on $[2, \infty)$ (a) f(4) =

(e) Go to https://www.desmos.com/calculator/znclra2xmj and Press the big + and select "f(x) expression" to add the tangent line equations at these two points. (Use y-b = m(x-a) form if you like). Notice anything interesting?

⁽f) Go to https://www.geogebra.org/m/JyWqdaZM and type in $0.5x^2 + 2$, our function f, and move the x(A) slider to 4. Move it to other values. What is the relationship between the slopes of f and f^{-1} ?

5. At their coressponding points, the slopes of the tangent lines will be ______ of each other.

f(a) = b	$f^{-1}(b) =$
f'(a) = c	$(f^{-1})'(b) =$

- (a) Without finding the inverse function, find $(f^{-1})'(-3)$ for $f(x) = x^3 + 4x + 2$. Steps
 - 1. Find x so that f(x) = -3
 - 2. fill in the top row
 - 3. Find f'(x)
 - 4. fill in the bottom row

(b) Without finding the inverse function, find $(f^{-1})'(1)$ for $f(x) = \sqrt{x^3 - 7}$. make your own box to organize the info (c) AP Style question: If g(f(x)) = x, g(7) = 2, and g'(7) = 10, then f'(2) is make your own box to organize the info

(d) AP Style question: If g(f(x)) = x, g(9) = 3, and g'(9) = -4, then f'(3) is make your own box to organize the info